Exercise 2

Solve the differential equation.

$$
y^{\prime \prime}-2 y^{\prime}+10 y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}-2\left(r e^{r x}\right)+10\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-2 r+10=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{2 \pm \sqrt{4-4(1)(10)}}{2}=\frac{2 \pm \sqrt{-36}}{2}=1 \pm 3 i \\
r=\{1-3 i, 1+3 i\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(1-3 i) x}$ and $e^{(1+3 i) x}$. According to the principle of superposition, the general solution to the ODE is a linear combination of these two.

$$
\begin{aligned}
y(x) & =C_{1} e^{(1-3 i) x}+C_{2} e^{(1+3 i) x} \\
& =C_{1} e^{x} e^{-3 i x}+C_{2} e^{x} e^{3 i x} \\
& =e^{x}\left(C_{1} e^{-3 i x}+C_{2} e^{3 i x}\right) \\
& =e^{x}\left[C_{1}(\cos 3 x-i \sin 3 x)+C_{2}(\cos 3 x+i \sin 3 x)\right] \\
& =e^{x}\left[\left(C_{1}+C_{2}\right) \cos 3 x+\left(-i C_{1}+i C_{2}\right) \sin 3 x\right]
\end{aligned}
$$

Therefore,

$$
y(x)=e^{x}\left(C_{3} \cos 3 x+C_{4} \sin 3 x\right),
$$

where C_{3} and C_{4} are arbitrary constants.

